35 research outputs found

    Semantically Guided Depth Upsampling

    Full text link
    We present a novel method for accurate and efficient up- sampling of sparse depth data, guided by high-resolution imagery. Our approach goes beyond the use of intensity cues only and additionally exploits object boundary cues through structured edge detection and semantic scene labeling for guidance. Both cues are combined within a geodesic distance measure that allows for boundary-preserving depth in- terpolation while utilizing local context. We model the observed scene structure by locally planar elements and formulate the upsampling task as a global energy minimization problem. Our method determines glob- ally consistent solutions and preserves fine details and sharp depth bound- aries. In our experiments on several public datasets at different levels of application, we demonstrate superior performance of our approach over the state-of-the-art, even for very sparse measurements.Comment: German Conference on Pattern Recognition 2016 (Oral

    Unsupervised Intuitive Physics from Visual Observations

    Full text link
    While learning models of intuitive physics is an increasingly active area of research, current approaches still fall short of natural intelligences in one important regard: they require external supervision, such as explicit access to physical states, at training and sometimes even at test times. Some authors have relaxed such requirements by supplementing the model with an handcrafted physical simulator. Still, the resulting methods are unable to automatically learn new complex environments and to understand physical interactions within them. In this work, we demonstrated for the first time learning such predictors directly from raw visual observations and without relying on simulators. We do so in two steps: first, we learn to track mechanically-salient objects in videos using causality and equivariance, two unsupervised learning principles that do not require auto-encoding. Second, we demonstrate that the extracted positions are sufficient to successfully train visual motion predictors that can take the underlying environment into account. We validate our predictors on synthetic datasets; then, we introduce a new dataset, ROLL4REAL, consisting of real objects rolling on complex terrains (pool table, elliptical bowl, and random height-field). We show that in all such cases it is possible to learn reliable extrapolators of the object trajectories from raw videos alone, without any form of external supervision and with no more prior knowledge than the choice of a convolutional neural network architecture

    Associative3D: Volumetric Reconstruction from Sparse Views

    Full text link
    This paper studies the problem of 3D volumetric reconstruction from two views of a scene with an unknown camera. While seemingly easy for humans, this problem poses many challenges for computers since it requires simultaneously reconstructing objects in the two views while also figuring out their relationship. We propose a new approach that estimates reconstructions, distributions over the camera/object and camera/camera transformations, as well as an inter-view object affinity matrix. This information is then jointly reasoned over to produce the most likely explanation of the scene. We train and test our approach on a dataset of indoor scenes, and rigorously evaluate the merits of our joint reasoning approach. Our experiments show that it is able to recover reasonable scenes from sparse views, while the problem is still challenging. Project site: https://jasonqsy.github.io/Associative3DComment: ECCV 202

    3D Fluid Flow Estimation with Integrated Particle Reconstruction

    Full text link
    The standard approach to densely reconstruct the motion in a volume of fluid is to inject high-contrast tracer particles and record their motion with multiple high-speed cameras. Almost all existing work processes the acquired multi-view video in two separate steps, utilizing either a pure Eulerian or pure Lagrangian approach. Eulerian methods perform a voxel-based reconstruction of particles per time step, followed by 3D motion estimation, with some form of dense matching between the precomputed voxel grids from different time steps. In this sequential procedure, the first step cannot use temporal consistency considerations to support the reconstruction, while the second step has no access to the original, high-resolution image data. Alternatively, Lagrangian methods reconstruct an explicit, sparse set of particles and track the individual particles over time. Physical constraints can only be incorporated in a post-processing step when interpolating the particle tracks to a dense motion field. We show, for the first time, how to jointly reconstruct both the individual tracer particles and a dense 3D fluid motion field from the image data, using an integrated energy minimization. Our hybrid Lagrangian/Eulerian model reconstructs individual particles, and at the same time recovers a dense 3D motion field in the entire domain. Making particles explicit greatly reduces the memory consumption and allows one to use the high-res input images for matching. Whereas the dense motion field makes it possible to include physical a-priori constraints and account for the incompressibility and viscosity of the fluid. The method exhibits greatly (~70%) improved results over our recently published baseline with two separate steps for 3D reconstruction and motion estimation. Our results with only two time steps are comparable to those of sota tracking-based methods that require much longer sequences.Comment: To appear in International Journal of Computer Vision (IJCV

    Action recognition from weak alignment of body parts

    No full text
    We propose a method for human action recognition from still images that uses the silhouette and the upper body as a proxy for the pose of the person, and also to guide alignment between samples for the purpose of computing registered feature descriptors. Our contributions include an efficient algorithm, formulated as an energy minimization, for using the silhouette to align body parts between imaged human samples. The descriptors computed over the aligned body parts are incorporated, via a multiple kernel framework, together with other standard features (such as a deformable part model (DPM) and dense SIFT), to learn a classifier for each action class. Experiments on the challenging PASCAL VOC 2012 dataset shows that our method exceeds the state-of-the-art performance on the majority of action classes

    Human pose estimation using a joint pixel-wise and part-wise formulation

    No full text
    Our goal is to detect humans and estimate their 2D pose in single images. In particular, handling cases of partial visibility where some limbs may be occluded or one person is partially occluding another. Two standard, but disparate, approaches have developed in the field: the first is the part based approach for layout type problems, involving optimising an articulated pictorial structure, the second is the pixel based approach for image labelling involving optimising a random field graph defined on the image. Our novel contribution is a formulation for pose estimation which combines these two models in a principled way in one optimisation problem and thereby inherits the advantages of both of them. Inference on this joint model finds the set of instances of persons in an image, the location of their joints, and a pixel-wise body part labelling. We achieve near or state of the art results on standard human pose data sets, and demonstrate the correct estimation for cases of self-occlusion, person overlap and image truncation

    Human pose estimation using a joint pixel-wise and part-wise formulation

    No full text
    Our goal is to detect humans and estimate their 2D pose in single images. In particular, handling cases of partial visibility where some limbs may be occluded or one person is partially occluding another. Two standard, but disparate, approaches have developed in the field: the first is the part based approach for layout type problems, involving optimising an articulated pictorial structure, the second is the pixel based approach for image labelling involving optimising a random field graph defined on the image. Our novel contribution is a formulation for pose estimation which combines these two models in a principled way in one optimisation problem and thereby inherits the advantages of both of them. Inference on this joint model finds the set of instances of persons in an image, the location of their joints, and a pixel-wise body part labelling. We achieve near or state of the art results on standard human pose data sets, and demonstrate the correct estimation for cases of self-occlusion, person overlap and image truncation

    Action recognition from weak alignment of body parts

    No full text
    We propose a method for human action recognition from still images that uses the silhouette and the upper body as a proxy for the pose of the person, and also to guide alignment between samples for the purpose of computing registered feature descriptors. Our contributions include an efficient algorithm, formulated as an energy minimization, for using the silhouette to align body parts between imaged human samples. The descriptors computed over the aligned body parts are incorporated, via a multiple kernel framework, together with other standard features (such as a deformable part model (DPM) and dense SIFT), to learn a classifier for each action class. Experiments on the challenging PASCAL VOC 2012 dataset shows that our method exceeds the state-of-the-art performance on the majority of action classes

    Robust Higher Order Potentials for Enforcing Label Consistency

    Get PDF
    This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation algorithms. These potentials enforce label consistency in image regions and can be seen as a generalization of the commonly used pairwise contrast sensitive smoothness potentials. The higher order potential functions used in our framework take the form of the Robust P n model and are more general than the P n Potts model recently proposed by Kohli et al. We prove that the optimal swap and expansion moves for energy functions composed of these potentials can be computed by solving a stmincut problem. This enables the use of powerful graph cut based move making algorithms for performing inference in the framework. We test our method on the problem of multi-class object segmentation by augmenting the conventional CRF used for object segmentation with higher order potentials defined on image regions. Experiments on challenging data sets show that integration of higher order potentials quantitatively and qualitatively improves results leading to much better definition of object boundaries. W
    corecore